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a b s t r a c t 

Alzheimer’s disease (AD) is one of the most difficult to cure diseases. Alzheimer’s disease seriously affects 

the normal lives of the elderly and their families. The mild cognitive impairment (MCI) is a transitional 

state between the normal aging and Alzheimer’s disease, and MCI is most likely to converted to AD later. 

MCI is often misdiagnosed as the symptoms of normal aging, which results to miss the best opportunity 

of treatment. Therefore, the accurate diagnosis of MCI is essential for the early diagnosis and treatment 

of AD. This paper presents a deep learning model for the auxiliary diagnosis of AD, which simulates the 

clinician’s diagnostic process. During the diagnosis of AD, clinician usually refers to the results of various 

neuroimaging, as well as the results of neuropsychological diagnosis. In this paper, the multi-modal med- 

ical images are trained by two independent convolutional neural networks. Then the consistency of the 

output of two convolutional neural networks is judged by the correlation analysis. Finally, the results of 

multi-modal neuroimaging diagnosis are combined with the results of clinical neuropsychological diag- 

nosis. The proposed model provides a comprehensive analysis about patient’s pathology and psychology 

at the same time, therefore, it improves the accuracy of auxiliary diagnosis. The diagnosis process is 

closer to the process of clinician’s diagnosis and easy to implement. Experiments on the public database 

of ADNI (Alzheimer’s disease neuroimaging initiative) show that the proposed method has better perfor- 

mance, and can achieve an excellent diagnostic efficiency in the auxiliary diagnosis of AD. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Alzheimer’s disease (AD) is one of the most difficult diseases

o cure. Alzheimer’s disease, commonly refers to the senile de-

entia, is a degenerative neurological disease that manifests as

he progressive loss of cognition and memory. After cardiovascu-

ar disease, cancer and stroke, Alzheimer’s disease is the fourth

eading cause of death in the world. AD is one of the most fi-

ancially costly diseases. Alzheimers disease has taken over from

ancer to become the most feared disease. It kills more peo-

le than breast cancer and prostate cancer combined. Gradually,
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odily functions of AD patients are lost, ultimately leading to

eath. At least 50 million people with Alzheimer’s disease in 2018.

ccording to statistics of World Health Organization (WHO), 4–8%

f adults may suffer from AD at the age of 65. After the age of

5, the risk of AD will increase to 35% [1,2] . Currently, the patho-

enesis of AD is still not fully understood. The academic commu-

ity usually believes that AD is related to the neurofibrillary tan-

les (NFT) and the extracellular Amyloid- β (A β) deposition, which

ause neurons and synapses loss or damage [3,4] . The mild cogni-

ive impairment (MCI) is a state of early AD, which is a transitional

tate between the normal aging and Alzheimer’s disease. MCI is of-

en misdiagnosed as the symptoms of normal aging. However, 44%

f MCI may eventually convert to AD within a few years [5] . Med-

cation and psychotherapy can effectively slow down the deterio-

ation of MCI and improve the lives quality of patients. Therefore,

he accurate diagnosis of MCI is very important for the early diag-

osis and treatment of AD. Currently, the research of Alzheimer’s

isease is one of the hottest topics in the medical research fields.

https://doi.org/10.1016/j.neucom.2019.04.093
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a  
At least 100 billion U.S. dollars are invested to the researches of

diagnosis and treatment of Alzheimer’s disease each year. 

Currently, the clinical examination methods of Alzheimer’s dis-

ease mainly include: the cerebrospinal fluid (CSF) examination,

the electroencephalogram examination, the neuropsychological ex-

amination, the neuroimaging examination (including the molecu-

lar imaging detection), the genetic detection, etc [6] . The clinical

neuropsychological examinations usually include the mini-mental

state examination (MMSE), the Clinical Dementia Rating (CDR), the

Weissler intelligence scale (WAS-RC), the activity of daily living

(ADL), the Alzheimer’s disease assessment scale-cognitive subscale

(ADAS-Cog), etc [7–9] . The MMSE and CDR are the most commonly

used methods in the clinical Alzheimer’s psychology diagnosis. The

MMSE and CDR can help clinician to determine the severity of de-

mentia and easily to accept by patients and their families. The neu-

ropsychological examination is just a clinical auxiliary diagnosis

method. With the rapid development of neuroimaging technology,

neuroimaging diagnosis becomes the most intuitive and the most

reliable method for the diagnosis of Alzheimer’s disease. Among of

the neuroimaging methods, magnetic resonance imaging (MRI) is

commonly used for the diagnosis of AD. It has high resolution for

soft tissues of brain and can displays brain tissues in three dimen-

sions, which can clearly distinguishes the gray matter and white

matter of brain [10] . MRI can be divided into the structural mag-

netic resonance imaging (sMRI) and the functional magnetic reso-

nance imaging (fMRI). The positron emission computed tomogra-

phy (PET) is also a commonly used neuroimaging technology for

the diagnosis of AD. It can show the distribution of lesions and

the changes of glucose metabolism by imaging agents. The diffu-

sion tensor imaging (DTI) and the diffusion kurtosis imaging (DKI)

can reflect the structural properties of white matter cellulose in

the brain, so they often used for the study of microstructural prop-

erties of white matter tracts [11] . Neuroimaging has a great impact

on the understanding, diagnosis, and treatment of neurological

diseases. 

Neuroimaging diagnosis can be regarded as an image under-

standing problem. Li and Tang propose a novel weakly supervised

deep matrix factorization (WDMF) algorithm, which uncovers the

latent image representations and tag representations embedded

in the latent subspace by collaboratively exploring the weakly-

supervised tagging information, the visual structure and the se-

mantic structure [12] . They also investigate the problem of learn-

ing knowledge from the massive community-contributed images

with rich weakly-supervised context information, which can bene-

fit multiple image understanding tasks simultaneously, the encour-

aging performance demonstrates its superiority [13] . 

Since the single-modal neuroimaging method only contains the

part of information related to the brain abnormalities, it may be

unsatisfactory for the classification of cognitively normal (CN), MCI

and AD. The multi-modal neuroimaging method can provide more

complementary information and can improve the accuracy of clas-

sification results theoretically [14,15] . The structural MRI images

of AD patients reflect the changes of brain structure. PET is the

functional imaging method that can acquire the functional fea-

tures of brain to enhance the ability of finding lesions [16] . The

fusion of MRI and PET is an effective multi-modal neuroimaging

method, which can provide more accurate data for clinical diag-

nosis and treatment [17,18] . Tong et al. present a multi-modality

classification framework to efficiently exploit the complementarity

in the multi-modal data. Pairwise similarity is calculated for each

modality individually using the features including regional MRI

volumes, voxel-based FDG-PET signal intensities, CSF biomarker

measures, and categorical genetic information. Similarities from

multiple modalities are combined in a nonlinear graph fusion pro-

cess, which generates a unified graph for final classification. The

random forest method are used to calculate similarity matrices and
erform classification [19] . Zhang et al. propose a multi-layer

ulti-view classification (ML-MVC) approach to explore the com-

lex correlation between the features and class labels. The high-

rder complementarity among different views are captured by

eans of the underlying information with a low-rank tensor regu-

arization [20] . 

Deep learning (DL) is a computational model which is com-

osed of multiple processing layers to learn the representations

f data with multiple levels of abstraction [21] . In spite of deep

earning gets the remarkable success in the field of computer vi-

ion, but the classification and recognition of medical images is

till an important challenge. In the past few years, the applica-

ion of deep learning in medical image processing has developed

apidly. Suk et al. propose a deep learning based method to dis-

inguish the cognitively normal (CN) and AD, CN and MCI, MCI

nd AD. The accuracy rates achieves 95.9% (CN vs. AD), 85.0%(CN

s. MCI), and 75.8% (MCI vs. AD), respectively [22] . The underlying

eatures are extracted from PET and MRI images by a deep Boltz-

ann machine, and the support vector machine (SVM) method is

sed for the finally classification. However, their method only uses

our-layer networks, which is difficult to extract the more abstract

eatures of images. 

Convolutional neural network (CNN) is a class of deep, feed-

orward artificial neural networks. CNN is one of the most influen-

ial deep learning methods for the classification and recognition of

mages. CNN directly uses the two-dimensional images as the input

ata, and then automatically learns from the training data, which

voids the different calculation errors caused by the traditional

anual extraction features. CNN can extract the higher-level fea-

ures to capture the subtle lesion sites [23–25] . Currently, CNN has

een used to identify AD and normal healthy human brains [26] .

arraf and Tofighi use CNN to recognize the brains of AD and the

rains of healthy human, resulted in the accuracy rate of 96.86%

27,28] . In their method, the sMRI and fMRI images are fused used

o classify AD by LeNet-5 networks and Google-Net networks. Al-

hough the higher accuracy is achieved, but only healthy elderly

eople and Alzheimer’s patients can be diagnosed, their method

ot be used for MCI. 

Deep learning can also be combined with a resting-state brain

etwork method to distinguish the CN, MCI and AD by using fMRI

mages. Ju et al. propose an early diagnosis method for Alzheimer’s

isease based on resting-state state brain network and deep learn-

ng [29] . The training model combined the fMRI images with the

linically relevant information to distinguish between normal ag-

ng, MCI and AD. Compared with the traditional method, the pre-

iction accuracy rate is increased by 31.21%. Lv et al. design an in-

ensive AlexNet network model for the diagnosis of CN, MCI and

D using MRI images [30] . AlexNet is the champion of ImageNet

hallenge in 2012, and it has a large impact in the field of ma-

hine learning, especially in the application of image processing

31] . AlexNet is a convolutional neural network, originally written

ith CUDA and running with GPU support. The intensive AlexNet

chieves 100% sensitivity for the diagnosis of AD vs. CN. Shi et al.

ropose a Alzheimer’s disease diagnosis algorithm using the multi-

odal fusion method [32] . They use MRI and PET images at the

ame time, and each PET image is aligned with MRI image by the

igid registration algorithm. Then, 93 features are extracted from

he same region of MRI and PET images respectively. Their method

erforms well in the diagnosis of dichotomous problems, but may

eet problems in the multiple classification problems because of

he manual intervention. The above mentioned studies have veri-

ed that deep learning can effectively diagnose MCI and AD, and

hey provide some research directions and ideas for the further re-

earch on auxiliary diagnosis of AD. 

This paper presents a deep learning model for the auxiliary di-

gnosis of AD, which simulates the clinician’s diagnostic process.
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Fig. 1. PET images of AD patient. 
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Fig. 2. MRI images of AD patient. 
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uring the diagnosis of AD, clinician usually refers to the results

f various of neuroimaging, as well as the results of neuropsy-

hological diagnosis. In this paper, MRI, PET and the clinical neu-

opsychological diagnosis are combined. The multi-modal medical

mages are trained by deep learning method. Then the result of

ulti-modal neuroimaging diagnosis is combined with the result

f clinical neuropsychological diagnosis. The proposed deep learn-

ng model provides a comprehensive analysis of patient’s pathol-

gy and psychology, therefore, it improves the accuracy of auxiliary

iagnosis. 

. Multi-modal deep learning model 

Deep learning is a machine learning method that stems from

he study of artificial neural networks (ANN) [33] . Deep learn-

ng technology learns features of data through the deep nonlin-

ar network structures. It combines the low-level features to form

he more abstract deep representations (attribute categories or fea-

ures). Deep learning can realize the complex function approxima-

ion and learn the essential features of data sets. Deep learning

rchitectures including the deep neural networks, the deep belief

etworks and the recurrent neural networks, etc [34] . Deep learn-

ng has been applied to many fields, such as the computer vision.

ost of the modern deep learning models are based on the arti-

cial neural network. A deep neural network (DNN) is an artificial

eural network with multiple layers between the input and out-

ut layers. Convolutional neural network (CNN) is a class of feed-

orward artificial neural networks, which is commonly applied in

mage analysis [35,36] . 

PET images can reflect the changes in glucose metabolism of

rain. In the normal human brain structures, such as the cere-

ral cortex, the subcortical structure and the cerebellum, the dis-

ribution of imaging agents is symmetrically in the PET images.

n the brain of MCI patients, the distribution of imaging agents is

bnormal. AD patients have a phenomenon of decreased glucose

etabolism in the cingulate gyrus, the bilateral parietal lobe, the

ippocampus, the temporal lobe and the frontal lobe. The left side

f temporal and frontal lobe is obviously larger than the right side.

ig. 1 shows the PET images of a AD patient. Compared with PET

mage, MRI image can clearly show the boundaries of gray matter

nd white matter, and can provide the high resolution images for

oft tissues. It can be observed from the MRI images that the at-

ophy degree of the hippocampus and the entorhinal cortex in the

rain of MCI patients is more obvious than that of the normal ag-

ng peers. The atrophy degree of the cerebral cortex and the medial

emporal lobe are more obvious in the brain of AD patients. Fig. 2
hows the MRI images of the same AD patient, including the coro-

al, sagittal, and transverse sections spin echo scan images. In this

aper, the two different modal images are learned by two inde-

endent convolutional neural networks to evaluate the relationship

etween the brain function metabolism, the brain atrophy and the

lzheimer’s disease. 

Convolutional neural network (CNN) is currently a research hot

pot of deep learning. Its weight-sharing network structure makes

t more similar to the biological neural networks, which reduces

he complexity of network models and reduces the number of

eights. A convolutional neural network is a multi-layer artifi-

ial neural network, which mainly consists of the input layer, the

onvolutional layer, the down-sampling layer or a pooling layer,

he fully connected layer and the output layer. Unlike the tradi-

ional neural network, the convolutional neural network is able to

xtract more abstract and generalized features from the original

nput data. The features are extracted through the convolutional

ayer and the down-sampling layer. The features are synthesized in

he fully connected layer and finally output from the output layer.

fter many times trains and parameter adjustments, the best net-

ork model is finally obtained [37,38] . 

The convolutional layer is composed of several feature maps,

ach of which is composed of several neurons. Each neuron is lo-

ally connected with a feature map of the previous output layer by

 weight matrix (the convolutional kernel). Compared with the full

onnected network structure, the number of neurons per convolu-

ional layer is greatly reduced, which is helpful to reduce the com-

utation complexity. The weight sharing means that all the neu-

ons in a given convolutional layer respond to the same feature

ithin their specific receptive field. The advantage of weight shar-

ng is to reduce the training parameters in the network, effectively

educes the complexity of model and enhance the generalization

bility. Each neuron in a neural network computes an output value

ccording to the input values coming from the receptive field in

he previous layer by applying activation function. The activation

unction is specified by a vector of weights and biases. Activation

unction of a neuron defines the output of neuron on a given in-

ut set. The nonlinear activation function such as Sigmoid func-

ion, Tanh function and ReLU function, etc . is used in CNN [39] .

ifferent local features, such as edges and contours of image, can

e extracted by convolution calculations, and deeper convolutional

ayers can extract more advanced features. According to these local

eatures, comprehensive features can be obtained which are used

o distinguish objects in image. The number of feature maps, the

ize of convolutional kernel, and the stride of convolution slid-

ng will affect the features expression ability and learning ability,
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Fig. 3. The proposed auxiliary diagnosis model of Alzheimer’s disease. 
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therefore, the network parameters should be selected appropriately

according to the different applications. 

Usually the convolutional layer and the down-sampling layer

are alternately arranged. It is common to periodically insert a

down-sampling layer between the successive convolutional layers

in the CNN architectures. The down-sampling layer is also called

the pooling layer. There are several non-linear functions to imple-

ment pooling. The down-sampling operation can reduce the num-

ber of neurons, and can ensure that the useful information in

the image is preserved while reducing the feature dimension, and

hence it can also control the over-fitting. The convolutional filter

is slid from top to bottom and from left to right in a determined

stride through a sliding window, and then the pixels in the block

corresponding to the window are sampled and output. The pool-

ing is further divided into the maximum pooling and the average

pooling. The maximum pooling is equivalent to the sharpening of

image, which can effectively compensate for the shortcomings of

medical image features, such as the PET images. The average pool-

ing can smooth the image and reduce the effects of noises. 

After several convolutional layers and down-sampling layers,

the high-level reasoning is done by the fully connected layers. Each

neuron in the fully connected layer is connected to every neu-

rons in the previous layer. The main purpose of the fully con-

nected layer is to expand the multi-dimensional feature vector to a

one-dimensional feature vector. The last fully connected layer will

transfer the output value to the output layer, and the output layer

will complete the task of identification and classification by the

softmax logistic regression function [40] . In order to avoid the situ-

ation that the correct rate is high in the training set and the recog-

nition effect is not good in practical applications, dropout technol-

ogy [41] is usually used in the fully connected layer, that is, the

output of some neurons will be set to 0 with a certain probability,

which makes the neuron fail. Dropout can greatly reduce the com-

plexity of mutual adaptation between neurons and can enhance

the robustness of model. 

This paper presents a deep learning model for the auxiliary

diagnosis of Alzheimer’s disease. Two independent convolutional

neural networks are used to extract features from the MRI images

and the PET images through a series of forward propagation con-

volution and down-sampling process. Then the consistency of the

output of two convolutional neural networks is judged by the cor-

relation analysis. If the results diagnosed by the two CNN models

are similar, it is intuitive that the diagnosis by different modality

is consistent for the same patient. Based on this idea, we calculate

the correlation between the diagnosis result of PET images and the

diagnosis result of MRI images, as the weight of the multi-modal
 d
euroimaging diagnosis. Finally the neuroimaging diagnosis result

nd the clinical neuropsychological diagnosis result are integrated

o make a comprehensive classification prediction. The advantage

f this model is that it not only utilizes the method of deep learn-

ng, but also integrates the clinical neuropsychological diagnosis in-

ormation. The diagnosis process is closer to the process of clini-

ian’s diagnosis. The auxiliary AD diagnosis model designed in this

aper is shown in Fig. 3 . 

In this paper, two independent convolutional neural networks

re used to learn the features of PET images and MRI images

espectively. The structure of convolutional neural network is as

ollows: 

(1) Convolutional layer 

Assuming that the l layer is a convolutional layer, then the j

eature map of the l layer is calculated as follows: 

 

l 
j = f 

( ∑ 

i ∈ M j 

x l−1 
i 

∗ k l i j + b l j 

) 

, (1)

here x l−1 
i 

is the input feature map of the l layer, which is also

he output feature map of the previous layer. M j is the set of input

eature map. k l 
i j 

represents the convolutional kernel correspond-

ng to the partial input feature map. b l 
j 

represents the bias offset

f the j feature map after convolution. ∗ represents the convolu-

ional calculation, and f ( · ) represents the ReLU activation function.

he essence of the above formula is to convolute the convolutional

ernel with all the associated feature maps, then add an bias off-

et, and finally calculate the output value of the convolutional layer

y the ReLU activation function. 

(2) Down-sampling layer (pooling layer) 

Assuming that the l layer is a down-sampling layer. In the

own-sampling layer, the output feature map is in one-to-one cor-

espondence with the input feature map. The calculation formula

f the output feature map is as follows: 

 

l 
j = f 

[
β l 

j · down 

(
x l−1 

j 

)
+ b l j 

]
, (2)

here β l 
j 

and b l 
j 

represent the weight coefficients and bias off-

et parameters respectively, and different input feature maps cor-

espond to different weight coefficients and bias offset parame-

ers. down ( · ) represents the down-sampling function by dividing

he input feature map into some non-overlapping regions with size

 × n and then average pooling or maximum pooling the pixels in

ach region. The feature map is reduced to 1/ n of the original size

n each dimension. The down-sampling operation compresses the

ata, and improves the robustness and efficiency of computation. 



F. Zhang, Z. Li and B. Zhang et al. / Neurocomputing 361 (2019) 185–195 189 

 

c  

e  

r  

i  

f

r  

x

x  

w  

t  

t  

n  

n  

p  

b  

l  

l  

T  

t  

n  

t  

t

 

t

x

y

w

i  

p  

t

3

 

i  

t  

t  

t  

m  

p  

t  

t  

b  

d  

l  

T  

fi  

t  

r  

a  

r  

r  

s  

n  

n  

a  

o  

o  

c  

t  

p  

o  

m

γ

w  

n  

1  

n  

o  

t  

o  

l  

n

 

t  

t  

c

C

w  

r  

(

r  

t  

c  

a  

r  

I  

a  

p

λ  

w  

t  

t  

λ  

r  

(  

λ  

t

4

 

d  

w  

m  

w  

B  

D  

a  

b  

d  

H  

d

(3) Fully connected layer 

Assuming that the l layer is a fully connected layer. The fully

onnected layer is fully connected to the previous layer, that is,

ach neuron in the fully connected layer is connected to each neu-

on in the previous layer. The input two-dimensional feature map

s expanded into a one-dimensional feature vector. The calculation

ormulas for the fully connected layer are as follows: 

 

l−1 = Bernoul l i (p) , (3)

˜ 
 

l−1 = r l−1 ∗ x l−1 , (4) 

˜ 
 

l = f ( w 

l ˜ x l−1 + b l ) , (5)

here Bernoulli function randomly generates a vector r l−1 obeying

he 0–1 distribution with a specified probability. The dimension of

he vector is the same as x l−1 . The first two layers of the full con-

ection layer use the dropout strategy to randomly block certain

eurons according to a certain probability, which can effectively

revent the over-fitting phenomena in the deep networks. w 

l and

 

l are the weighting and offset parameters of the fully connected

ayer respectively. The calculation process of the fully connected

ayer is similar as the convolutional layer and the pooling layer.

he output feature map after the dropout is weighted and added

o the bias offset, the activation value is used as the input of the

ext layer by activation function. The local features extracted by

he convolutional layer and the pooling layer are integrated into

he global features. 

(4) Output layer 

The output of the final result uses the softmax function, and

he calculation formulas are as follows: 

 i = 

e z i ∑ k 
j=1 e 

z j 
, (6) 

 i = 

e z i ∑ k 
j=1 e 

z j 
, (7) 

here k is the total number of categories to be classified, and z i 
s the i dimension component in the k dimension vector. x i is the

robability of the i class over k classes of the PET images, and y i is

he probability of the i class over k classes of the MRI images. 

. Correlation analysis 

Correlation analysis is a statistical analysis method that stud-

es the correlation between two or more random variables with

he equal status. The correlation is a kind of non determinis-

ic relation, and its analysis methods include the graph correla-

ion analysis (line and scatter plot), the covariance and covariance

atrix, the correlation coefficient, the regression analysis (sim-

le linear regression and multiple regression), the information en-

ropy analysis and the mutual information analysis. The correla-

ion coefficient is a measure of the degree of linear correlation

etween the research variables. The correlation coefficient can be

ivided into the simple correlation coefficient, the multiple corre-

ation coefficient, the canonical correlation coefficient and so on.

he Pearson correlation coefficient between two variables is de-

ned as the quotient of the covariance and the standard devia-

ion between the two variables. The output of convolution neu-

al network can be understand as the result of neuroimaging di-

gnosis. After the deep learning training, the convolutional neu-

al network classifies images (MRI or PET) into three categories: 0

epresents cognitively normal (CN), 1 represents MCI and 2 repre-

ents AD (dementia). For example, if the output of a convolution

eural network is 0, and the output of another convolution neural
etwork is also 0, the two neuroimaging diagnoses are consistent

nd the result of neuroimaging diagnosis is reliable. If the output

f another convolution neural network is 2, the diagnosis result

f the deep learning model is unreliable. This paper calculates the

orrelation between the prediction of PET images and the predic-

ion of MRI images based on Pearson correlation coefficient. The

urpose of correlation analysis is to determine whether the results

f two neuroimaging diagnoses are consistent. The calculation for-

ula is as follows: 

= 

∑ n 
i =1 ( x i − x̄ ) ( y i − ȳ ) √ ∑ n 

i =1 ( x i − x̄ ) 
2 
√ ∑ n 

i =1 ( y i − ȳ ) 
2 
, (8) 

here x̄ and ȳ represent the mean of probabilities, and n is the

umber of categories for x and y . The γ value is between −1 and

. The consistency of the prediction of two convolutional neural

etworks is judged by Pearson correlation coefficient. If the value

f γ approaches 1, it means that the prediction of PET images by

he convolutional neural network is consistent with the prediction

f MRI images, and the diagnosis result of the multi-modal deep

earning model is reliable. If the γ value approaches −1, the diag-

osis result of the deep learning model is unreliable. 

Based on the Pearson correlation coefficient, this paper presents

he following formula to combine the neuroimaging diagnosis with

he clinical neuropsychological diagnosis, and hence to obtain the

omprehensive diagnosis result: 

Dscore = λ × a v g ( PETcnn + MRIcnn ) 

+ (1 − λ) × a v g ( MMSEscore + CDRscore ) , (9) 

here avg represents the mean function. PETcnn and MRIcnn rep-

esent the output results of two convolutional neural networks

neuroimaging diagnosis) respectively. MMSEscore and CDRscore 

epresent the results of clinical neuropsychological examinations,

his is, the score of the mini-mental state examination (MMSE), the

linical dementia rating (CDR) respectively. The value of CDscore is

 comprehensive diagnosis result after the combination of the neu-

oimaging diagnosis and the clinical neuropsychological diagnosis.

n the above formula, the influence of the neuroimaging diagnosis

nd the clinical neuropsychological diagnosis is controlled by the

arameter λ. The calculation formula of λ is as follows: 

= (1 + γ ) / 2 , (10)

here γ is the Pearson correlation coefficient between the predic-

ion of PET images and the prediction of MRI images. When λ = 1 ,

he algorithm only takes the neuroimaging diagnosis results. When

= 0 , the algorithm will focus on the diagnosis of clinical neu-

opsychology to prevent the possibility of other dementia types

for example, the dementia of Parkinson’s disease). The value of

determines the contribution of the different diagnosis results to

he final comprehensive diagnosis result. 

. Experimental results and analysis 

The experimental data of this paper mainly come from the

atabase of Alzheimer’s Disease Neuroimaging Initiative (ADNI),

hich is a large-scale clinical medical imaging database. ADNI

akes all data and samples available for sharing with scientists

orldwide [43,42] . ANDI is managed by the National Institute of

iomedicine Imaging and Bioengineering (NIBIB), the US Food and

rug Administration (FDA), the National Institutes of Aging (NIA),

nd other organizations. ADNI Database provides neuroimaging,

iochemical, genetic biological markers, and other neuroscience

ata for research in all areas of AD. In addition to the data of ANDI,

uaihe hospital of Henan University also provides some clinical

ata for the experiments of this paper. 
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Table 1 

The clinical information of the subjects. 

Number Male/Female Age MMSE CDR 

CN 101 37/64 74.63 ± 4.8 23.25 ± 2.1 0 ± 0 

MCI 200 68/132 74.97 ± 7.0 27.14 ± 1.7 0.5 ± 0.03 

AD 91 34/57 75.48 ± 7.3 23.46 ± 2.1 0.8 ± 0.25 
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ADNI tracks and collects 2063 test subjects from 59 regions

around the world. According to the Mini-Mental State Examina-

tion (MMSE) scores, subjects in ADNI can be divided into three

categories: cognitively normal (CN) subjects, MCI subjects, and AD

subjects. In the baseline ADNI-1 database, there are a total of 807

subjects, including 186 AD subjects, 226 CN subjects and 395 MCI

subjects. The subjects in this paper are selected only to have both

PET images (18F-FDG PET) and MRI images. The clinical informa-

tion of selected subjects is shown in Table 1 . 

The original image archive of ADNI database is in the NIfTI for-

mat, and ADNI provides the preprocessing methods for MRI and

PET images. All the pre-processed PET data is in the DICOM for-

mat, which simplifies the subsequent analysis process. The MRI

images selected in this paper are derived from 1.5T magnetic res-

onance imaging device, and some of the images are derived from

3T magnetic resonance imaging devices. The MRI images are the

pre-processed T 1 weighted MP-RAGE sequence images and the T 2 
weighted sequence images. The image preprocessing methods will

vary from device to device, and also depend on the system con-

figuration. For example, for the images acquired from Philips MRI

device, ADNI does not provide pre-processing method for the grad-

warp correction and B 1 correction, so it is necessary to develop

a special-purpose pre-processing method eliminating the gradient

nonlinearity, the geometric distortion and the field inhomogeneity.

In this paper, MicroDicom software is used to filter the usable

data (without missing information) in the ADNI database. We con-

vert the image format from DICOM to PNG, which is more easily

to process. The image size is adjusted to 224 × 224. Deep learning

method requires a large amount of data, so the data set needs to

be expanded. Different patients have different postures in the pro-

cess of medical imaging, and it is impossible to maintain the same

posture at all times. PET imaging needs to inject imaging agents,

and the inspection time is longer. The FDG-PET imaging obtains 65

frames within 30 min to 60 min after the injection. The data set

can be expanded by image rotating etc ., which can make up for the

number of images with different postures. Increasing the number

of data samples can effectively prevent over-fitting and improve

the generalization ability. In this paper, the images are processed

by flipping, scaling and rotation to expand the data set. 

In this paper, the data set is divided into the training set (90%),

the test set (5%) and the verification set (5%), respectively. In or-

der to make the training model have better generalization ability,

division of data set is random. Considering the condition of data

set and the performance of CNN models, this paper finally selects

the 19-layer VGG (Visual Geometry Group) convolutional neural

network model for the PET and MRI images recognition [44,45] .

VGGNet-19 network model consists of 19 weight layers. VGGNet-

19 has very deep convolutional architectures with smaller sizes of

convolutional kernel (3 × 3), stride (1 × 1), and pooling window

(2 × 2). The specific network structure of VGGNet-19 used in this

paper is shown in Fig. 3 . 

The input data source is the 224 × 224 × 3 images. After

the calculation of five convolution networks (ConvA, ConvB, ConvC,

ConvD, ConvE), the extracted feature vectors are input into three

fully connected layers, and the classification result is finally out-

put. Taking the ConvA network as an example, it consists of two

convolutional layers and one maximum pooling layer. Each convo-

lutional layer has 64 convolutional kernels (3 × 3), the stride is 1,
nd the padding is 1. The size of convolutional data is 224 × 224

6 4 (224 = (224 + 2 × 1 − 3)/1 + 1). The down-sampling layer

ses the maximum pooling method. The maximum pooling size is

 × 2. The maximum value neuron in the region is selected, and

he data size of the next layer is 112 × 112 × 6 (112 = (224 −
)/2 + 1). The calculation process of ConvB is similar as ConvA. The

alculation processes of ConvC, ConvD, and ConvE are also simi-

ar as ConvA, except that they contain four convolutional layers. In

he ConvE network, data are processed into a long vector and then

nput to the fully connected layer FC. There are three fully con-

ected layers in total. The first fully connected layers contain 4096

eurons. The dropout strategy stops the output of some neurons

ccording to a certain probability, which effectively prevents the

ver-fitting phenomenon due to the network depth. The dropout

alue is 0.5. The number of neurons in the last fully connected

ayer is consistent with the number of categories. In this paper,

he VGGNet-19 network outputs three categories, which represent

N, MCI, and AD respectively. 

The experimental environment of this paper is the Tensorflow

eep learning framework based on Ubuntu 16.04 operating system.

t is configured to accelerate GPU computing with NVIDIA CUDA

.0. The software used for experiments is Matlab 2017a. In this

aper, the convolutional neural network structure is used to ex-

ract the low-level and high-level features from a large amount of

ata, thus producing a high-precision prediction model. The con-

olutional neural network training process in this paper is as fol-

ows: firstly, the parameters of network model are initialized. The

nitialization weights of network are particularly important for the

eep neural network. In order to avoid the phenomenon of stop-

ing learning caused by the gradient instability, the Glorot uni-

orm distribution initialization method is adopted. The parameter

eneration obeys [ −limit, limit ] uniform distribution. The limit is

qrt (6/( num _ in + num _ out)). sqrt is the square root function. The

um _ in and num _ out are the input and output units of weight ten-

or respectively, which can reduce the gradient dispersion prob-

ems. Each convolutional layer performs convolution calculation on

he input batch data, and introduces nonlinear elements into the

eural network by using the ReLU activation function, which im-

roves the network sparse expression ability and solves the com-

lex classification problem. Through the forward propagation, the

utput value of each layer is calculated, and then the error is prop-

gated by layer-by-layer back propagation, and the weight param-

ters of each layer are adjusted according to the residual error. In

his paper, the basic learning rate is set to 0.01, and the learning

ate is reduced by 0.1 per 50 0 0 iterations. The termination of train-

ng is determined by the number of iterations. 

The human brain structure is complicated. It can be divided

nto three basic units: the forebrain, the midbrain and the hind-

rain. The human brain can be segmented into 116 macro-regions

ccording to the AAL (Automated Anatomical Labeling) atlas (90

ortical/subcortical regions and 26 cerebellar/vermis regions).

GGNet-19 reduces the size of convolution kernel and increases

he number of convolution kernels, therefore, it is more suit-

ble for the processing of brain images and can extract more

bstract features. In VGGNet-19, ConvA extracts the lowest level

eatures of input image, and each convolutional kernel extracts

ifferent f eatures. ConvA can extract 64 local features from

he input data, and the number of local features extracted by

he subsequent convolutional networks are 128, 256 and 512,

espectively. 

Fig. 4 shows the partial features visualization of a PET image

xtracted by VGGNet. The partial features visualization of an MRI

mage extracted by VGGNet is shown in Fig. 5 . 

Fig. 7 is the accuracy curve of the MRI image classification

odel. The VGGNet-19 network has a larger depth and larger pa-

ameters amount. It can be seen from Fig. 7 that the VGGNet-19
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Fig. 4. Visualization of PET image local feature extracted by VGGNet. 
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Fig. 5. Visualization of MRI image local feature extracted by VGGNet. 

Table 2 

Clinical neuropsychological diagnostic criteria. 

CN MCI AD 

MMSE 27 10–27 £10 

MMSEscore 0 1 2 

CDR 0–0.5 0.5–1 1–3 

CDRscore 0 1 2 

t  

d

 

t  

a  

d  

r  

t  

o  

t  
etwork converges after a fewer of iterations. The horizontal axis

ndicates the number of iterations. 

The softmax layer outputs a probability distribution. Cross en-

ropy indicates the distance between what the model believes the

utput distribution should be, and what the original distribution

eally is. Cross entropy loss function is used to guide the training

rocess of the neural network. Fig. 6 shows the loss curve of PET

mage classification model. The number of test samples is 20 0 0,

nd the batch size is set to 32. It can be seen from the figure that

he loss value gradually decreases during the experiment, and fi-

ally it tends to a stable state (no longer decrease). After many

imes of parameters adjustments, the two independent CNN mod-

ls can provide the neuroimaging diagnosis of PET and MRI images

ith high accuracy. 

The clinical neuropsychological criteria are shown in Table 2 .

he MMSEscore and CDRscore used in Eq. (9) come from Table 2 .

inally, the value of CDscore is calculated by Eq. (9) , and the

omprehensive diagnosis results are obtained, which combines
he neuroimaging diagnosis and the clinical neuropsychological

iagnosis. 

The classification accuracy is not the only evaluation criteria for

he results of Alzheimer’s disease diagnosis. Usually the sensitivity

nd the specificity also involved in the evaluation of Alzheimer’s

isease diagnosis. Sensitivity is also known as the true positive (TP)

ate, which is the probability that a patient be diagnosed as posi-

ive. In this paper, sensitivity refers to the probability of having AD

r MCI and being correctly diagnosed. Specificity is also known as

he true negative (TN) rate, which is the probability that a person
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Fig. 6. Loss curve of the PET image classification model. 

Fig. 7. Accuracy curve of the MRI image classification model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. AD vs. CN classification ROC curve. 

Fig. 9. AD vs. MCI classification ROC curve. 
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who is actually not ill is diagnosed as negative. In this paper, speci-

ficity refers to the probability that the CN is correctly diagnosed. 1-

Specificity is called the false positive (FP) rate, which is the prob-

ability that a person who is not ill but be diagnosed as positive.

In the medical field, the higher sensitivity means the lower missed

diagnosis rate. The lower 1-Specificity means the lower misdiagno-

sis rate. The calculation formulas of the sensitivity, the specificity

and the accuracy are as follows: 

Sensitivity = 

TP 

TP + FN 

, (11)

Specificity = 

TN 

FP + TN 

, (12)

Accuracy = 

TP + TN 

TP + TN + FP + FN 

, (13)

where TP represents the true positive, that is, the number of AD

(or MCI) samples predicted by the model as AD (or MCI). FN repre-

sents the false negative, which is the number of AD (or MCI) sam-

ples predicted as CN by the model. FP represents the false positive,

which is the number of CN samples predicted as AD (or MCI) by

the model. TN represents the true negative, which is the number

of CN samples predicted as CN by the model. 
Ideally, we want the higher sensitivity and the higher speci-

city. However, in practice, we usually need to find a balance point

etween the sensitivity and the specificity. This process can be ex-

ressed by ROC (receiver operating characteristic) curve. ROC curve

s a curve drawn according to the statistical data of two classifica-

ion problem. In this paper, the ordinate of ROC curve indicates

he sensitivity and the abscissa indicates the 1-Specificity, so the

ensitivity and the specificity can be comprehensively measured

y the ROC curve. The ideal indicator is that the sensitivity is 1,

-Specificity is 0, that is, there are neither missed diagnosis nor

isdiagnosis. 

Figs. 8 and 9 are the experimental result classification ROC

urve of AD vs. CN and AD vs. MCI respectively for the single-

odal neuroimaging diagnosis and the multi-modal neuroimaging

iagnosis. The area under the ROC curve reflects the accuracy of di-

gnosis. The single-modal neuroimaging diagnosis means that we

nly use MRI or PET images to train a VGGNet-19 deep convolution

eural network, and the result of neuroimaging diagnosis is not be

ombined with the results of clinical psychological diagnosis. 

The area under the ROC curve reflects the accuracy of diagnosis.

t can be seen from the ROC curve that under the premise of using

GGNet-19 network to classify images, the comprehensive diagno-

is of proposed method is more close to the results of the doctor’s

iagnosis compared with only one modal images is used to diag-

ose AD and CN. In other word, the multi-modal neuroimaging di-

gnosis is superior to the single modal neuroimaging diagnosis. 

The area under ROC curve (AUC) is equivalent to the proba-

ility that a randomly chosen positive sample is ranked higher

han a randomly chosen negative sample [51,52] . Assuming that

he ROC curve is formed by sequential coordinates connection

 (x 1 , y 1 ) , (x 2 , y 2 ) , (x 3 , y 3 ) , . . . , (x m 

, y m 

) } , the AUC can be estimated

s follows, 

UC = 

1 

2 

m −1 ∑ 

i=1 

(x i −1 − x i )(y i + y i+1 ) . (14)

Table 3 shows a comparative analysis of experimental results.

he various indicators of AD vs. CN, MCI vs. CN and AD vs. MCI

lassification are compared with the traditional methods and other
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Table 3 

The comparative analysis of the various indicators using the proposed method with the traditional methods and other deep learning methods. 

Auxiliary diagnosis Methods Sensitivity (%) Specificity (%) Accuracy (%) AUC 

AD vs. CN Liu et al. [46] 89.48 92.44 90.27 0.9697 

AD vs. CN Suk et al. [47] 94.65 95.22 95.35 0.9798 

AD vs. CN Intensive AlexNet [30] 100.00 93.57 96.14 0.9777 

AD vs. CN MM-SDPN (with SVM) [32] 97.13 95.93 98.53 0.9732 

AD vs. CN MM-SDPN (with LINEAR) [32] 96.93 95.02 98.37 0.9816 

AD vs. CN VGGNet-19 (MRI) 95.94 93.97 95.12 0.9789 

AD vs. CN VGGNet-19 (PET) 96.32 92.89 95.89 0.9828 

AD vs. CN The proposed method 96.58 95.39 98.47 0.9861 

MCI vs. CN Liu et al. [46] 98.97 52.59 83.90 0.8329 

MCI vs. CN Suk et al. [47] 95.37 65.87 85.67 0.8478 

MCI vs. CN Intensive AlexNet [30] 80.62 88.02 84.80 0.8081 

MCI vs. CN MM-SDPN (with SVM) [32] 87.24 97.91 67.04 0.8297 

MCI vs. CN MM-SDPN (with LINEAR) [32] 86.99 94.24 71.32 0.8808 

MCI vs. CN VGGNet-19 (MRI) 82.94 74.21 83.24 0.8467 

MCI vs. CN VGGNet-19 (PET) 84.54 75.36 84.62 0.8744 

MCI vs. CN The proposed method 90.11 91.82 85.74 0.8815 

AD vs. MCI 3D CNN [48] n/a n/a 86.84 n/a 

AD vs. MCI Li et al. [49] n/a n/a 70.10 n/a 

AD vs. MCI Intensive AlexNet [30] 97.10 78.72 89.66 0.8691 

AD vs. MCI DLasso [50] 86.92 83.33 80.00 0.8026 

AD vs. MCI mfLasso [50] 84.62 83.26 84.00 0.8503 

AD vs. MCI VGGNet-19 (MRI) 86.76 74.65 82.41 0.8720 

AD vs. MCI VGGNet-19 (PET) 94.97 79.24 84.20 0.8792 

AD vs. MCI The proposed method 97.43 84.31 88.20 0.8801 
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tate-of-the-art deep learning methods. The comparison meth-

ds include Liu et al. model [46] , Suk et al. model [47] , In-

ensive AlexNet model [30] , MM-SDPN model [32] , VGGNet-19

MRI), VGGNet-19 (PET), 3D CNN model [48] , Li et al. model [49] ,

Lasso and mfLasso model [50] . Where the VGGNet-19 (MRI) and

GGNet-19 (PET) is the single-modal neuroimaging diagnosis that

nly MRI or PET images are used to train a VGGNet-19 deep con-

olution neural network, and the result of neuroimaging diagno-

is is not be combined with the results of clinical psychological

iagnosis. 

From the comparison of experimental results in Table 3 we can

ee that the proposed model is superior to the traditional non-

eep learning algorithms in the diagnosis sensitivity, specificity

nd accuracy. The experimental results of the proposed method are

lose to other deep learning methods. The proposed model incor-

orates the neuropsychological diagnosis information such as the

MSE and CDR. The MMSE is susceptible to the level of educa-

ion. In the MMSE, MCI is similar to the normal aging elderly, so it

s difficult to distinguish between MCI and CN, in other word, the

MSE is not very sensitive to MCI. In the clinical applications, the

isdiagnosis is more unacceptable than the missed diagnosis, so a

ore specific diagnosis model is needed. 

In the auxiliary diagnosis of AD vs. CN, and MCI vs. CN, the pro-

osed method achieves the highest accuracy and the AUC value

ompare with other methods, while the sensitivity and specificity

re also higher. In the auxiliary diagnosis of AD vs. MCI, the

roposed method achieves the highest sensitivity, specificity and

UC value compare with other methods, and meanwhile the ac-

uracy ranks the second. The sensitivity, specificity, accuracy and

UC value of proposed method achieve 97.39%, 84.27%, 88.25% and

.8864, respectively. The experimental results show that the pro-

osed multi-modal auxiliary diagnosis can achieve an excellent di-

gnostic efficiency. 

. Conclusions 

This paper presents a deep learning model for the early aux-

liary diagnosis of Alzheimer’s disease, which simulates the diag-

osis process of clinicians. During the diagnosis of AD, clinician

sually refers to the results of various of neuroimaging, as well

s the results of neuropsychological diagnosis. In this paper, the
euroimaging diagnosis and the clinical psychological diagnosis are

ombined. The multi-modal auxiliary diagnosis model are trained

y the deep learning method. We designed two independent con-

olution neural networks for training of MRI and PET images. The

wo independent convolutional neural networks are used to ex-

ract MRI image features and PET image features through a se-

ies of calculations such as the convolution, the down-sampling

nd softmax. The consistency of the output of two convolutional

eural networks is judged by correlation analysis. If the results of

he two CNN models are similar, it is intuitive that the diagnosis

or the same patient are consistent with the different modality di-

gnosis. Based on this idea, a new correlation calculation method

s proposed. We calculate the Pearson correlation coefficient be-

ween the diagnosis result of PET images and the diagnosis result

f MRI images. Then we combine the results of the multi-modal

euroimaging auxiliary diagnosis with the results of clinical psy-

hological diagnosis, so the pathology and psychology of patients

re analyzed in a comprehensive way. Finally, a comprehensive di-

gnosis result is got, which improves the accuracy of diagnosis.

he advantage of the proposed model is that it combines the neu-

oimaging diagnosis with the clinical neuropsychological diagno-

is. The diagnosis process is closer to the process of clinician’s di-

gnosis and easy to implement. This paper expands the data set

y image flipping, scaling and rotation. A large number of experi-

ents on the open database of ADNI show that the diagnostic ef-

ect of the proposed method is superior to other auxiliary diag-

ostic models in many indicators. The experimental results show

hat the proposed multi-modal auxiliary diagnosis can achieve an

xcellent diagnostic efficiency. 
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